Video Person Re-identification by Temporal Residual Learning
نویسندگان
چکیده
In this paper, we propose a novel feature learning framework for video person re-identification (re-ID). The proposed framework largely aims to exploit the adequate temporal information of video sequences and tackle the poor spatial alignment of moving pedestrians. More specifically, for exploiting the temporal information, we design a temporal residual learning (TRL) module to simultaneously extract the generic and specific features of consecutive frames. The TRL module is equipped with two bi-directional LSTM (BiLSTM), which are respectively responsible to describe a moving person in different aspects, providing complementary information for better feature representations. To deal with the poor spatial alignment in video reID datasets, we propose a spatial-temporal transformer network (STN) module. Transformation parameters in the STN module are learned by leveraging the high-level semantic information of the current frame as well as the temporal context knowledge from other frames. The proposed STN module with less learnable parameters allows effective person alignments under significant appearance changes. Extensive experimental results on the largescale MARS, PRID2011, ILIDS-VID and SDU-VID datasets demonstrate that the proposed method achieves consistently superior performance and outperforms most of the very recent state-of-the-art methods.
منابع مشابه
Convolutional LSTM Networks for Video-based Person Re-identification
In this paper, we present an end-to-end approach to simultaneously learn spatio-temporal features and corresponding similarity metric for video-based person re-identification. Given the video sequence of a person, features from each frame that are extracted from all levels of a deep convolutional network can preserve a higher spatial resolution from which we can model finer motion patterns. The...
متن کاملLVreID: Person Re-Identification with Long Sequence Videos
This paper mainly establishes a large-scale Long sequence Video database for person re-IDentification (LVreID). Different from existing datasets, LVreID presents many important new features. (1) long sequences: the average sequence length is 200 frames, which convey more abundant cues like pose and viewpoint changes that can be explored for feature learning. (2) complex lighting, scene, and bac...
متن کاملOpen-set Person Re-identification
Person re-identification is becoming a hot research for developing both machine learning algorithms and video surveillance applications. The task of person re-identification is to determine which person in a gallery has the same identity to a probe image. This task basically assumes that the subject of the probe image belongs to the gallery, that is, the gallery contains this person. However, i...
متن کاملبازشناسی انسان در سیستمهای نظارت ویدئویی
People re-identification is one of the most important and fundamental processes in video surveillance systems. The accuracy and efficiency of this task influence the effectiveness of the subsequent processes. Event detection and behavior analysis are instances of such subsequent processes that are classified in semantic levels. In people re-identification, having an image or video of an individ...
متن کاملVideo-Based Person Re-Identification by Simultaneously Learning Intra-Video and Inter-Video Distance Metrics
Video-based person re-identification (re-id) is an important application in practice. However, only a few methods have been presented for this problem. Since large variations exist between different pedestrian videos, as well as within each video, it’s challenging to conduct re-identification between pedestrian videos. In this paper, we propose a simultaneous intra-video and inter-video distanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.07918 شماره
صفحات -
تاریخ انتشار 2018